Partial List of Peer Reviewed Journal Articles That Used EEMS in Model Development
Alarcon, V. J., Linhoss, A. C., Kelble, C. R., Mickle, P. F., Sanchez-Banda, G. F., Mardonez-Meza, F. E., Bishop, J., & Ashby, S. L. (2022). Coastal inundation under concurrent mean and extreme sea-level rise in Coral Gables, Florida, USA. Natural Hazards, 111(3), 2933–2962.
https://doi.org/10.1007/s11069-021-05163-0Gong, R., Wang, H., Xu, J., Hu, Z., & Li, Y. (2022). Numerical Simulation of Phosphorus Release in an Urban Lake Based on a Diagenesis Model. Environmental Modeling & Assessment.
https://doi.org/10.1007/s10666-022-09833-6Rodríguez-Cuevas, C., Hernández-Antonio, A., Hernández-Gómez, J. J., Padilla-Pérez, D., & Couder-Castãneda, C. (2022). Hydrodynamical numerical assessment of the recent droughts at Gallinas River, San Luis Potosí, Mexico [Preprint]. In Review.
https://doi.org/10.21203/rs.3.rs-1705421/v1Torres-Bejarano, F., Martínez, J. A. G., Saleme, M. N., & Martínez, J. C. (2022). Modelación del transporte de sedimentos en el Delta del río Sinú, Colombia. Revista Internacional de Contaminación Ambiental, 38, 25–40.
https://doi.org/10.20937/RICA.54337Torres-Bejarano, F. M., Verbel-Escobar, M., & Atencia-Osorio, M. C. (2022). Water quality model-based methodology to assess assimilative capacity of wastewater discharges in rivers. Global Journal of Environmental Science and Management, 8(4).
https://doi.org/10.22034/GJESM.2022.04.01Wu, Y., Zhang, J., Hou, Z., Tian, Z., Chu, Z., & Wang, S. (2022). Seasonal Dynamics of Algal Net Primary Production in Response to Phosphorus Input in a Mesotrophic Subtropical Plateau Lake, Southwestern China. Water, 14(5), 835.
https://doi.org/10.3390/w14050835Ahn, J. M., Kim, J., Park, L. J., Jeon, J., Jong, J., Min, J.-H., & Kang, T. (2021). Predicting Cyanobacterial Harmful Algal Blooms (CyanoHABs) in a Regulated River Using a Revised EFDC Model. Water, 13(4), 439.
https://doi.org/10.3390/w13040439Rifai, H. S., Kiaghadi, A., & Burleson, D. W. (2021). Assessing Damages to Built and Natural Environments: Linking Hydrodynamic and Geospatial Enviro-Economical Models. Frontiers in Climate, 3.
https://www.frontiersin.org/articles/10.3389/fclim.2021.610593Tinh, N. X., Tanaka, H., Abe, G., Okamoto, Y., & Pakoksung, K. (2021). Mechanisms of Flood-Induced Levee Breaching in Marumori Town during the 2019 Hagibis Typhoon. Water, 13(2), 244.
https://doi.org/10.3390/w13020244Torres-Bejarano, F. M., Martínez, J. A. G., & Pérez, J. S. R. (2021). Modelación de la intrusión salina en el delta del río Sinú, Córdoba. Interfaces, 4(2), 1–18.
Villota-López, C., Rodríguez-Cuevas, C., Torres-Bejarano, F., Cisneros-Pérez, R., Cisneros-Almazán, R., & Couder-Castañeda, C. (2021). Applying EFDC Explorer model in the Gallinas River, Mexico to estimate its assimilation capacity for water quality protection. Scientific Reports, 11(1), 13023.
https://doi.org/10.1038/s41598-021-92453-zKim, J., Kim, Jaeyoung, & Seo, D. (2020). Effect of major pollution sources on algal blooms in the Seungchon weir and Juksan weir in the Yeongsan River using EFDC. Journal of Korea Water Resources Association, 53(5), 369–381.
https://doi.org/10.3741/JKWRA.2020.53.5.369Seo, D., Kim, J., & Kim, J. (2020). Analysis of influence on water quality and harmful algal blooms due to weir gate control in the Nakdong River, Geum River, and Yeongsan River. Journal of Korea Water Resources Association, 53(10), 877–887.
https://doi.org/10.3741/JKWRA.2020.53.10.877Torres-Bejarano, F. M., Torregroza-Espinosa, A. C., Martinez-Mera, E., Castañeda-Valbuena, D., & Tejera-Gonzalez, M. P. (2020). Hydrodynamics and water quality assessment of a coastal lagoon using environmental fluid dynamics code explorer modeling system. Global Journal of Environmental Science and Management, 6(3), 289–308.
https://doi.org/10.22034/gjesm.2020.03.02Uijttewaal, W. (2020). River flow 2020: Proceedings of the 10th conference on fluvial hydraulics, Delft, The Netherlands, 7-10 July 2020.
Yeom, J., Kim, I., Kim, M., Cho, K., & Kim, S. D. (2020). Coupling of the AQUATOX and EFDC Models for Ecological Impact Assessment of Chemical Spill Scenarios in the Jeonju River, Korea. Biology, 9(10), 340.
https://doi.org/10.3390/biology9100340Alarcon, V. J., Linhoss, A. C., & McAnally, W. H. (2019). Salinity Intrusion in the Lower St. Johns RiverWorld Environmental and Water Resources Congress 2019: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management, pp. 13-24. American Society of Civil Engineers.
Scandrett, A. M., Arifin, R. R., & Jung, J. Y. (2019). Estuarine Salinity Intrusion and Implications for Aquatic Habitat: A Case Study of the Lower St. Johns River Estuary, Florida.
Bai, H., Chen, Y., Wang, D., Zou, R., Zhang, H., Ye, R., Ma, W., & Sun, Y. (2018). Developing an EFDC and Numerical Source-Apportionment Model for Nitrogen and Phosphorus Contribution Analysis in a Lake Basin. Water, 10(10), 1315.
https://doi.org/10.3390/w10101315Li, S. M., Wang, X. L., Zhou, Q. Y., & Han, N. N. (2018). Simulation of Nitrogen and Phosphorus Removal in Ecological Ditch Based on EFDC Model. IOP Conference Series: Earth and Environmental Science, 128, 012023.
https://doi.org/10.1088/1755-1315/128/1/012023Kashyap, S., Dibike, Y., Shakibaeinia, A., Prowse, T., & Droppo, I. (2017). Two-dimensional numerical modelling of sediment and chemical constituent transport within the lower reaches of the Athabasca River. Environmental Science and Pollution Research, 24(3), 2286–2303.
https://doi.org/10.1007/s11356-016-7931-3Kim, D., Park, H.-S., & Chung, S.-W. (2017). Relationship of the Thermal Stratification and Critical Flow Velocity Near the Baekje Weir in Geum River. Journal of Korean Society on Water Environment, 33(4), 449–459.
https://doi.org/10.15681/KSWE.2017.33.4.449Park, Y., Pyo, J., Kwon, Y. S., Cha, Y., Lee, H., Kang, T., & Cho, K. H. (2017). Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea. Water Research, 126, 319–328.
https://doi.org/10.1016/j.watres.2017.09.026Li, L., Lai, G.-Y., & Wang, P. (2016). Study on the Dynamic Correlation between Water-level and Reservoir Capacity of Poyang Lake Based on EFDC. Journal of Applied Science and Engineering, 19(4), 413–428.
https://doi.org/10.6180/jase.2016.19.4.05Torres-Bejarano, F., Padilla Coba, J., Rodríguez Cuevas, C., Ramírez León, H., & Cantero Rodelo, R. (2016). La modelación hidrodinámica para la gestión hídrica del embalse del Guájaro, Colombia. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 32(3), 163–172.
https://doi.org/10.1016/j.rimni.2015.04.001Mansoor, S. Z. (2015). Sediment Transport and Metals Modeling in an Urban Stream—The Don River, Toronto.
https://uwspace.uwaterloo.ca/handle/10012/9738Tang, C., Li, Y., Jiang, P., Yu, Z., & Acharya, K. (2015). A coupled modeling approach to predict water quality in Lake Taihu, China: Linkage to climate change projections. Journal of Freshwater Ecology, 30(1), 59–73.
https://doi.org/10.1080/02705060.2014.999360Torres-Bejarano, F., Padilla, J., Rodríguez-Cuevas, C., & Cantero, R. (2015). Hydrodynamics modelling utilizing the EFDC Explorer model for the sustainable management of Canal del Dique-Guajaro hydrosystem, Colombia. In Brebbia, C. A. (Ed.), WIT Transactions on The Built Environment (1st ed.), Vol. 1, pp. 423–434. WIT Press.
https://doi.org/10.2495/SD150371Alarcon, V. J., Johnson, D., Mcanally, W. H., van der Zwaag, J., Irby, D., & Cartwright, J. (2014). Design and Deployment of a Dynamic-Coupling Tool for EFDC. In Murgante, B. et al. (Ed.), Computational Science and Its Applications – ICCSA 2014, Vol. 8581, pp. 615–624. Springer International Publishing.
https://doi.org/10.1007/978-3-319-09150-1_45Cunanan, A. M. & Salvacion, J. W. L. (2014). Analysis Of Water Temperature Of Laguna Lake Using EFDC Model. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 3(8), 9.
Devkota, J. & Fang, X. (2013). Response Characteristics of the Perdido and Wolf Bay System to Inflows and Sea Level Rise. British Journal of Environment and Climate Change, 3(2), 229-256.
Jun, Q., Zhifeng, Y., & Zhenyao, S. (2012). Three-dimensional modeling of sediment transport in the Wuhan catchments of the Yangtze River. Procedia Environmental Sciences, 13, 2437–2444.
https://doi.org/10.1016/j.proenv.2012.01.232Lee, S. B., Birch, G. F., & Lemckert, C. J. (2011). Field and modelling investigations of fresh-water plume behaviour in response to infrequent high-precipitation events, Sydney Estuary, Australia. Estuarine, Coastal and Shelf Science, 92(3), 389–402.
https://doi.org/10.1016/j.ecss.2011.01.013Li, Y., Acharya, K., & Yu, Z. (2011). Modeling impacts of Yangtze River water transfer on water ages in Lake Taihu, China. Ecological Engineering, 37(2), 325–334.
https://doi.org/10.1016/j.ecoleng.2010.11.024Li, Y., Acharya, K., Chen, D., & Stone, M. (2010). Modeling water ages and thermal structure of Lake Mead under changing water levels. Lake and Reservoir Management, 26(4), 258–272.
https://doi.org/10.1080/07438141.2010.541326Xia, M., Craig, P. M., Schaeffer, B., Stoddard, A., Liu, Z., Peng, M., Zhang, H., Wallen, C. M., Bailey, N., & Mandrup-Poulsen, J. (2010). Influence of Physical Forcing on Bottom-Water Dissolved Oxygen within Caloosahatchee River Estuary, Florida. Journal of Environmental Engineering, 136(10), 1032–1044.
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000239Carpenter, D. D., Yang, L., Mades, D., Watson, K. W., & Flannery, S. (2009). Development of an Ecohydraulics Model to Evaluate the Impact of Water Withdrawals on Estuary Salinity and Thermal Regimes.
https://www.iahr.org/library/infor?pid=23832